.MCAD 303010000 1 74 16183 0 .CMD PLOTFORMAT 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 NO-TRACE-STRING 0 2 1 0 NO-TRACE-STRING 0 3 2 0 NO-TRACE-STRING 0 4 3 0 NO-TRACE-STRING 0 1 4 0 NO-TRACE-STRING 0 2 5 0 NO-TRACE-STRING 0 3 6 0 NO-TRACE-STRING 0 4 0 0 NO-TRACE-STRING 0 1 1 0 NO-TRACE-STRING 0 2 2 0 NO-TRACE-STRING 0 3 3 0 NO-TRACE-STRING 0 4 4 0 NO-TRACE-STRING 0 1 5 0 NO-TRACE-STRING 0 2 6 0 NO-TRACE-STRING 0 3 0 0 NO-TRACE-STRING 0 4 1 0 NO-TRACE-STRING 0 1 21 15 0 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 0.983333 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=12 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=12 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=2 family=Times^New^Roman points=12 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .TXT 3 1 16151 0 Cg b73.000000,73.000000,79 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\f0 \b \fs28 Kinetics of Enzymatic Reactions. The Michaelis-Menten Equation}} } .TXT 4 6 16156 0 Cg a50.500000,53.600000,83 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\i \fs24 Zoran Zdravkovski, Institute of Chemistry, Skopje, Macedoni}{\i \fs24 a}} } .TXT 5 -5 16159 0 Cg a71.800000,72.000000,152 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The rate limiting step in the enzyme catalyzed transformation of substrate }{\i S}{ into product }{\i P}{ }{is the breakdown of the ES complex:}} } .EQN 4 11 16183 0 { 6 42 3520 0 8 65 423}{66} !1!*!!!$E)1A!!.[)1!!!!!!!a!!!!&L!1!%!!!!"##f!!4'!!#a!A!!!!!!!!!!!a!!!#DH!!!%!!!!!A#f!!.[!!!,!D&K2s!&!!!!#%'-!+4($'!!!#1G#U!;!')y59#V!"&K#Z-"3[/p&OH45;!s3{EJ3e!O$G!!!#1G#U!?!')y59#T!"1A!1!&!,{!!!G"#Iq-y"&-@4'Ia!e!!&K!q#+%?JQ)!!!!Q!6!"<7!"Ab!#GI!A!#%i)1#&Ag!!!="3!!36Ac!!!=!Q!)%i+u!cDx%i!!!!!u!.<7/}!!!!!!(/!!!#1G#U!k!')y59#T!%&K!A!&!+&d 3xG[!!!#!".[%I!!%i#e(pAc!!&g!Q!-%i1A!"Ah!!".%i&K!"Ad!!7)!a!%)BAa!!!u!.>{)Q!!!!!!'=!!!#1G#U!a!')y59#T!$6k!A!&!&7#3xGP!!!(!$1A%)!!%i#e(pAd!!A}"#!!%i4'!%.{(A!q&M!=!!!!!&+uF+$I!!!!!!!5!!!!'M1P!"G-1u8&!/Iq$g!#!!.[4(*B+U!!/-!'!'#fA!$I!&<7$G!!!#1G#U!?!')y59#T !"1A!Q!&!/&^3xG-!&)1!Q!!6k"C!)!!6l+u!!!G"#Iq&+"&-@4'Ia!7!!)1!q#!$=JQ!!!t!!&K2#%b!5.[/m!Q!!!!'M1P!&1A1u8&!/Iq.;!%!!<7>|-(+U!!,7![$MJQ4(-(+U#e!A!o!'DH!!!!!%G->{#e!0>m!!!!!!!!"G!!!!!!!!!!!!#e!A!!!!!!!!!E+u!!!!!!!!7M!!!5!!!!'M1P!"G-1u8&!/Iq$g!$!!.[:T*B+U!! /-!"!'<8?M$R!&#e%I!!!#1G#U!K!')y59#T!#&K!a!&!(!53xG-!%#e"#"s!5G-Kd&K!!!!!!!!!!!!!!!!!"<7!!!G"#Iq(/"&-@4'Ia!C!!+u!q![$MJQ!!!b!!1A3U$U!!!!!!!!!!!!!!!!!!!!!!!C!!!!'M1P!$<71u8&!/Iq)Q!#!!.[-z*B+VG-!!&K$w!9!!!=!1!O%i)1#&Ag!!!="3!!,l)M!!!!/=!M!5&K!!!!!"+u!!!G "#Iq&+"&-@4'Ia!7!!&K!q"'#kJQ!!!t!!1A?M!/!5&K0?!5!!!!'M1P!"G-1u8&!/Iq$g!$!!.[EJ"2+U!!/-!$!!"C!)!!6k"C$G!!!#1G#U!?!')y59#T!"1A!Q!&!,!13xG-!&)1!A"y!!>|,g!x!$!!!!!G"#Iq/]"&-@4'Ia!o!!+u"c"g#{JQ!!!c!#,(3xH3#{JQ!1!#!%G-AQ!!!!!!.;!#!1!!Kd&K!!!!!!!)+u!!!!!!!!!! !1!#!!!!!!!!!#,W!!!!!!!!"G!!!"+u!!!G"#Iq&+"&-@4'Ia!7!!)1!q"M#kJQ!!!t!!#eA!!&!5>{.k!;!!!!'M1P!#<71u8&!/Iq&k!%!!.[2$$v+U!!,'!'!!&L.;#_J3!!!!!!!!!!!!!!!!!!%I!!!#1G#U!K!')y59#T!#&K!a!&!#,(3xG-!%#e"##$!%G-!!!!!!!!!!!!!!!!!!!!!#+u!!!G"#Iq+U"&-@4'Ia!W!!&K!q!W #kJQ&[!!!q!M!"6k!"Ab!#GI!Q!-%i1A!"Ah!!!f&M?=/.Aa!!!!/=",!%&K!!!!!!6k!!#_!A!!!1!"!!!!!!!%!!!!(_#f!!+u!!!O!26k!q!!!"+w/-",!".[!!#`!ODF!!!!!!!!9Q#e!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!"!!+u!!!N!1&K"3!!!##j!1!f!&)12s!&!!!!$G'@!(.["3!!!##j!1!A!&)14w!&!!!!$G'@!(<7 "3!!!##j!1!L!&)15i!&!!!!$G'@!).["3!!!##j!1!A!&)17]!&!!!!$G'@!)<7"3!!!##j!1!t!&)18O!%!!!!(o#e!!6k!!#_!A!!!!!!!!!!!!!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!!!!+u!!!N!1#e!a!!!#DH!Q!%!!!!Iq#f!!6k!!#_!A!!!1!"!!!!!!!%!!!!(_#f!!+u!!!N!1)1!a!!!0!"!1!)!!!!KU&K !!#e!1!!!!!!!a!!!#DH!1!&!!!!$G'=!,Iq!q!!!")3.[!#!1.[!!!5!EDGAQ!&!!!!$7':!!&L!a!!!#DH!!!%!!!!(_#f!!+u!!!#!1&K"c!!!#+x!Q#$!%IqBs!p!-9Q.{!%!!!!!A#f!!+u!!!N!1!!!a!!!#DH!1!%!!!!!A#g!!<7!!!E!Q)1!1$S!09Q-y#\!%9Q!a!!!!&L!1!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e !!!!!!+u!!!N!1#e!a!!!#DH!Q!%!!!!Iq#f!!6k!!#_!A!!!1!"!!!!!!!%!!!!(_#f!!+u!!!O!26k!q!!!"+w/-!M!14'!!!B!q#e,g!t!#Ab!q!!!"+w/-!Y!14'!!!B!q#e/-!t!$6l!a!!!#G.!!!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!!!!+u!!!N!1#e!a!!!#DH!Q!%!!!!Iq#f!!6k!!#_!A!!!1!"!!!!!!!% !!!!(_#f!!+u!!!N!1)1!a!!!0!"!1!)!!!!KU&K!!#e!1!!!!!!!a!!!#DH!1!&!!!!$G'=!'DH!q!!!")3.["s!1.[!!!5!EDG3U#j!!!!$7':!,!"!a!!!#DH!!!%!!!!(_#f!!+u!!!#!1&K"c!!!#+x!Q"0!5Iq4w$V!(4(.{!%!!!!!A#f!!+u!!!N!1!!!a!!!#DH!1!%!!!!!A#g!!<7!!!E!Q)1>k$S!+4(-y"h!59Q!a!!!!&L !1!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!!!!+u!!!N!1#e!a!!!#DH!Q!%!!!!Iq#f!!6k!!#_!A!!!1!"!!!!!!!%!!!!(_#f!!+u!!!O!26k!q!!!"+w/-#?!14'!!!B!q#e,g!t!.<8!q!!!"+w/-#K!14'!!!B!q#e&K!t!/1B!q!!!"+w/-#P!14'!!!B!q#e(?!t!/>|!q!!!"+w/-#[!14'!!!B!q#e&K!t!01B!q!! !"+w/-#`!14'!!!B!q#e.[!t!0>|!q!!!"+w/-!'!A4'!!!B!q#e&K!t!!1C!q!!!"+w/-!,!A4'!!!B!q#e&K!t!!>}!a!!!#G.!!!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!!!!+u!!!N!1#e!a!!!#DH!Q!%!!!!Iq#f!!6k!!#_!A!!!1!"!!!!!!!%!!!!(_#f!!+u!!!O!26k!q!!!"+w,G#@!"!!!!#`!B+u"S!!!!!! A!&K!!!!!1&M&p*L4^,|3U!%!a!!!#DH!a!%!!!!Iq#g!".[!!#`!ODF!!!!!!!!9Q#f!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j!1".!%)1F;!&!!!!$G'4!/+u!a!!!#DH!a!%!!!!Iq#g!".[!!#`!P+t!!!!!!!!9Q#e!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j!1!R!%4'Gm!% !!!!(o#e!!+u!!!N!1)1!a!!!0!"!1!)!!!!KU&K!!#e!1!!!!!!!a!!!#DH!1!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!!!!+u!!!N!1#e!a!!!#G.%)!&!!!!$G'V!.<7!a!!!#DH!a!%!!!!Iq#g!".[!!#`!ODF!!!!!!!!9Q#f!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j!1".!'9QF+!&!!!! $G'Z!/)1!a!!!#DH!a!%!!!!Iq#g!".[!!#`!P+t!!!!!!!!9Q#e!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j!1!N!'DGG]!&!!!!$G'Z!/4'"3!!!##j!1!R!'DGH?!%!!!!(o#e!!+u!!!N!1)1!a!!!0!"!1!)!!!!KU&K!!#e!1!!!!!!!a!!!#DH!1!%!!!!(_#h!!+u!!#U!1#e"C!!!0<9!!!"!!#e!!!! !!+u!!!N!1#e!a!!!#G.%)!&!!!!$G'1!)9R!a!!!#DH!a!%!!!!Iq#g!".[!!#`!ODF!!!!!!!!9Q#f!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j!1".!%+u8?#j!!!!$G'5!*&L!a!!!#DH!a!%!!!!Iq#g!".[!!#`!P+t!!!!!!!!9Q#e!!!!!!!!$,-"3[/p&OH45;!s3{EJ3e!8!A+u!!!N!1&K"3!!!##j !1!S!%6k9q#i!!!!(o#e!!+u!!!N!1)1!a!!!0!"!1!)!!!!KU&K!!#e!1!!!!!!!a!!!#DH!1!%!!!!(_#i!!+u!!#U!1&K!a!!!#DH!Q!%!!!!Iq#f!!)1!!!!!!4."34."B6k!0Ix!!!!!!!!!!!!"36c!$!Q  .TXT 11 -12 16158 0 Cg a72.500000,73.000000,215 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { Since the }{\i ES}{ concentration is not easily measured experimentally, Leonor Michaelis and Maud Menten have given an alternative expression for the determination of the rate of such enzymatic reactions:}} } .EQN 8 3 16163 0 { 5 10 736 0 8 56 108}{66} !1!*!!!$0o#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!#!1#e!q!!!!#gLVLV!!+u!!!O!26k!q!!!$#g!1!!!!.[!!!,!A!!!!!&!!!!#%&k!a!)#E!!!#1G#U!3!0LVLVIq!!6k!!#%LR9PAa6C!Q>{!!!G"#Iq#%!n1X-!/D:c23!!G-!)!!!!KU&K!"!!!!!!!!!!!a!!!#DH!!!&!!!!$G).!:&M!q!!!")3L'%]"4.[!!#`!I#c!!!! !!!!9Q#f!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!y!Q+u!!!N!1#e"S!!!$&U1A'-!!#e!!".!+6k"S!!!$&U2c%f!Q#e!!".!+6k"S!!!$&U8o+.!A#e!!!l!!#f#e!!!0>}6zG-!!!!!!"S!1!!!!&K!A!1/4:`1gK!!!!%!!!!(_#g!!+u!!#U!1#e"S!!!$&U1A'H!1#e!!!^!.)1"S!!!$&U8o+O!a#e!!!L!.)1$W!!!0>}1PIq!!!! !!"S!1!!!!!!!A!1/C:`2:)Q.A/t&P'\3[$u!&6n!a!!!#DH!1!%!!!!Iq#g!!9Q!!!S"o6l3u+v!!!!1a!q!".[!!#`!I#c!!!!!!!!9Q#e!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!!!!+u!!!N!1&K!a!!!0!"!1!-!!!!)Q=A!>?!!Q!!!&?p0o"E!.4'7-!-!!!!)Q=e!_1F!Q!!!&?p0o"E!.4'7-!6!!!!Ke&kLG!!!!!!!*!"!!!! !!!#!"!u2yEN4Y!o2:4G/#K"1WG-/})5!!!!(_#f!!+u!!#U!1&K"S!!!$&U8o+/!Q#e!!!n!-4'"c!!!#1G#U!+!0LVLVIr!!!!!!!1!!!!Ke&_!!9Q!!!!!,Ac!!!!!!#g!C'@5`*G29DG!a+u!!!N!1&K!a!!!0!"!1!$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!Q  .EQN 0 55 16165 0 { 5 11 704 0 8 52 115}{66} !1!*!!!$-y#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!#!1#e!q!!!!#gLVLV!!+u!!!O!26k!q!!!$#g!1!!!!.[!!!,!A!!!!!&!!!!#%(o![!)#E!!!#1G#U!3!0LVLVIq!!6k!!#%LR+t1A8B!Q>{!!!G"#Iq#%!n1X-!/D:c23!!Aa!)!!!!KU&K!"!!!!!!!!!!!a!!!#DH!!!&!!!!$G).!=G0!q!!!")3L'$U"D.[!!#`!I#c!!!! !!!!9Q#f!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!!!!+u!!!N!1#e"S!!!$&U1A'7!!#e!!!l!!#f"S!!!$&U3U&9!Q#e!!".!+6k"S!!!$&U3U%<"##e!!".!+6k"S!!!$&U7}*^!q#e!!".!+6k$W!!!0>}&ZIq!!!!!!"S!1!!!!!!!A!1/C:`2:)Q.A/t&P'\3[$u!'BI!a!!!#DH!A!%!!!!Iq#f!!9Q!!!S"i!#-i#f!!!!.+#,!!9Q !!!S"iDH:S+v!!!!1a"3!!9Q!!!S"iDHD74(!!!!1Q"%!!9Q!!!S"k4*)a1B!!!!1Q"%!"!!!!#`!I#c!!!!!!!!9Q#e!!!#!!&K#j*L3['\3E!!!a!!!#DH!1!%!!!!Iq#g!!9Q!!!S"i!#8/&L!!!!+E#8!!9Q!!!S"iDH1Q.\!!!!(?#8!".[!!#`!I#c!!!!!!!!9Q#e!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e"/,w+u!!!N!1&K!a!! !0!"!1!*!!!!)Q=F!6+|!1!!!#4'6K!+!!!!'M1P!!<7LVLVLG#e!!!!!"!!!!#`!B+u"S!!!!!!A!&K!!!!!1&M&p*L4^,|3U!%!a!!!#DH!1!%!!!!Iq#g!!)1!!!!!!!#!!&K!!!!!1!*!!!$+u#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!Q  .TXT 4 -40 16164 0 Cg a37.600000,38.100000,85 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\f0 where }{\f0 \i K}{\fs16 \dn8 \f0 M}{\f0 , the Michaelis constant is defined as:}} } .TXT 7 -17 16166 0 Cg a72.000000,72.000000,166 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { }{\f0 Several algebraic transformations to a linear form have been proposed for this equation which are more useful in the analysis of the experimental data:}} } .EQN 4 34 16170 0 { 5 13 832 0 8 56 134}{66} !1!*!!!$9q#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!#!1#e!q!!!!#gLVLV!!+u!!!O!26k!q!!!$#g!1!!!!.[!!!,!A!!!!!&!!!!#%&k!a!+#E!!!#1G#U!3!0LVLVIq!!6k!!#%LR+tAa;h!Q>{!!!G"#Iq#%!n1X-!/D:c23!!G-!)!!!!KU&K!"!!!!!!!!!!!a!!!#DH!!!&!!!!$G).!5!!!q!!!")3L'$=!1.[!!!5!PDHIq&P !!!!$7).!=&Q!q!!!"+wL'$\"C.[!!!4!PDH=I9f!!!!Ke'mL7!!!!!!!*!"!!!!!!!#!"!u2yEN4Y!o2:4G/#K"1WG-!!!%!!!!(_#f!!9Q!!!S"iDH0O!"!!!!)A#%!!9Q!!!S"iDH;u6l!!!!)A#%!".[!!#`!I#c!!!!!!!!9Q#f!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!t5Y+u!!!N!1&K!a!!!0!"!1!*!!!!)Q=`!W!!!1!!!'>{ =Y!*!!!!)Q=F!@9T!1!!!%>{!1#n!!!!)Q=`!R!$!1!!!'>{=Y!*!!!!)Q=`!X.c!1!!!'>{=Y!1!!!!Ke'mL7!!!!!!!*!"!!!!!A!#!"!t5_EK3{Aa!!+u!!!N!1#e!a!!!0!"!A!*!!!!)Q=9!K<8!1!!!$DGDw!*!!!!)Q=`!WAe!1!!!.4'1A!*!!!!)Q=9!C)8!1!!!#>{Dw!6!!!!Ke&kLG!!!!!!!*!"!!!!!!!#!"!u2yEN4Y!o 2:4G/#K"1WG-/49U!!!!(_#g!!+u!!#U!1#e"S!!!$&U3U&E!a#e!!!n!-4'"S!!!$&U7}+-!Q#e!!"%!(!!"S!!!$&U7})N"S#e!!"%!(!!$W!!!0>}6zG-!!!!!!"S!1!!!!!!!A!1/C:`2:)Q.A/t&P'\3[$u!$DH!a!!!#DH!1!%!!!!Iq#g!!Aa!!!S"k4*JC+x!!!!0T*0!)&KEY"E!!<7!!!G"#Iq"c#dLVLV!1!!!!!!#e!!!0>} $G!*!!!!!!#!!A!!!!!"!A&m/4:f4m/j!!+y!!!!(_#g!!+u!!#U!1#e!Q!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!Q  .TXT 4 -30 16167 0 Cg a14.500000,14.600000,19 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Lineweaver-Burk:}} } .EQN 5 30 16171 0 { 5 15 704 0 8 56 152}{66} !1!*!!!$.K#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!#!1#e!q!!!!#gLVLV!!+u!!!O!26k!q!!!$#g!1!!!!.[!!!,!A!!!!!&!!!!#%&k!g!,#E!!!#1G#U!3!0LVLVIq!!6k!!#%LR+t&KA4!Q>{!!!G"#Iq#%!n1X-!/D:c23!!G-!)!!!!KU&K!"!!!!!!!!!!!a!!!#DH!!!&!!!!$G).!=9T!q!!!")3L'%D!r.[!!#`!I#c!!!! !!!!9Q#f!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!!!!+u!!!N!1#e"S!!!$&U1A'-!!#e!!".!+6k"S!!!$&U3U$^!a#e!!".!+6k"S!!!$&U1A(""##e!!!l!!#f"S!!!$&U1A)!"S#e!!".!+6k#e!!!0>}6zG-!!!!!!"S!1!!!!&K!A!1/4:`1gK!!!!%!!!!(_#g!!+u!!#U!1#e"S!!!$&U1A'W!1#e!!!^!.)1"S!!!$&U1A(;!A#e !!!N!.)1"S!!!$&U1A(t!q#e!!#}6zG-!!!!!!"S!1!!!!!!!A!1/C:`2:)Q.A/t&P'\3[$u!!!!!a!!!#DH!1!%!!!!Iq#g!!Aa!!!S"k4*Ce)4!!!!0T*0!)&KEY"E!".[!!#`!C#d!!!!!!!!9Q#e!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e#M-)+u!!!N!1&K!a!!!0!"!1!*!!!!)Q=9 !J+|!1!!!%DGBs!*!!!!)Q=9!J6u!1!!!'&K4'!+!!!!'M1P!!<7LVLVLG#e!!!!!"!!!!#`!B+u"S!!!!!!A!&K!!!!!1&M&p*L4^,|3U!%!a!!!#DH!1!%!!!!Iq#g!!)1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Q  .TXT 4 -30 16168 0 Cg a5.200000,5.600000,9 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Eadie:}} } .EQN 6 30 16172 0 { 5 12 736 0 8 52 128}{66} !1!*!!!$2C#e!!)1$W!!!!!!!q!!!!9S!!!!!!+u!!!#!1#e!q!!!!#gLVLV!!+u!!!O!26k!q!!!$#g!1!!!!.[!!!,!A!!!!!&!!!!#%(o![!*#E!!!#1G#U!3!0LVLVIq!!6k!!#%LR+t1A;(!Q>{!!!G"#Iq#%!n1X-!/D:c23!!Aa!)!!!!KU&K!"!!!!!!!!!!!a!!!#DH!!!&!!!!$G).!5!!!q!!!")3L'#w!A.[!!!5!PDHCe)6 !!!!$7).!:G2!q!!!"+wL'$8"3.[!!!4!PDH,g9f!!!!Ke'mL7!!!!!!!*!"!!!!!!!#!"!u2yEN4Y!o2:4G/#K"1WG-!!!%!!!!(_#f!!Aa!!!S"iDH,G!$!!!!0T*0!)&KEY"E!!Aa!!!S"iDHD7)4!!!!0T*0!)&KEY"E!".[!!#`!C#d!!!!!!!!9Q#e!!!!!!&K#j-"3[/p&OH45;!s3{EJ3e!t5Y+u!!!N!1&K!a!!!0!"!1!*!!!! )Q=`!^+y!1!!!'&K4'!*!!!!)Q=F!6Ai!1!!!%DGBs!*!!!!)Q=`!V}6zG- !!!!!!"S!1!!!!&K!A!1/4:`1gK!!!!%!!!!(_#g!!+u!!#U!1#e"S!!!$&U1A's!A#e!!!^!.)1"S!!!$&U1A)0!q#e!!!L!.)1"c!!!#1G#U!+!0LVLVIr!!!!!!!1!!!!Ke&_!!9Q!!!!!,Ac!!!!!!#g!C'@5`*G29DG!a+u!!!N!1#e!a!!!0!"!A!$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!Q  .TXT 3 -30 16169 0 Cg a5.400000,5.600000,9 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Dixon:}} } .TXT 11 -5 16154 0 Cg a69.700000,73.000000,342 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { }{\f0 Given the following data for the hydrolysis of sucrose by the enzyme invertase }{\f0 \f0 (}{\i \f0 k}{\f0 2 is when the reaction is performed in 2 mol/L urea)}{\f0 , find which equation has the best correlation coefficient, determine the Michaelis constant and }{\f0 \i k}{\f0 \fs20 b}{\f0 - the maximum turnover number:}{ }} } .EQN 21 0 6 0 {0:S}NAME:({7,1}0.2340.1750.1460.1170.08760.05840.0292) .EQN 0 19 7 0 {0:k1}NAME:({7,1}0.3710.3720.3490.3300.3110.2650.182) .EQN 0 25 8 0 {0:k2}NAME:({7,1}0.1880.1920.1860.1820.1540.1110.083) .EQN 6 14 10 0 {0:i}NAME:0;{0:last}NAME({0:S}NAME) .EQN 7 -47 11 0 &&(_n_u_l_l_&_n_u_l_l_)&({0:k1}NAME)[({0:i}NAME),({0:k2}NAME)[({0:i}NAME)@&&(_n_u_l_l_&_n_u_l_l_)&({0:S}NAME)[({0:i}NAME) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 NO-TRACE-STRING 3 0 1 0 NO-TRACE-STRING 0 3 2 0 NO-TRACE-STRING 0 4 3 0 NO-TRACE-STRING 0 1 4 0 NO-TRACE-STRING 0 2 5 0 NO-TRACE-STRING 0 3 6 0 NO-TRACE-STRING 0 4 0 0 NO-TRACE-STRING 0 1 1 0 NO-TRACE-STRING 0 2 2 0 NO-TRACE-STRING 0 3 3 0 NO-TRACE-STRING 0 4 4 0 NO-TRACE-STRING 0 1 5 0 NO-TRACE-STRING 0 2 6 0 NO-TRACE-STRING 0 3 0 0 NO-TRACE-STRING 0 4 1 0 NO-TRACE-STRING 0 1 33 16 0 3 .TXT 27 -11 13 0 Cg a14.500000,14.600000,19 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Lineweaver-Burk:}} } .EQN 0 21 12 0 (1)/({0:k}NAME):({0:Km}NAME)/({0:kb}NAME)*(1)/({0:S}NAME)+(1)/({0:kb}NAME) .TXT 7 -16 16173 0 Cg a53.700000,60.900000,175 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { }{\fs24 The correlation is between the reciprocal values of the substrate concentration }{\i0 \fs24 [}{\i0 \b0 \fs24 S]}{\fs24 and the rate }{\b0 \i \fs24 k}{\fs24 .}} } .EQN 8 12 14 0 ({0:Sr}NAME)[({0:i}NAME):(1)/(({0:S}NAME)[({0:i}NAME)) .EQN 0 19 15 0 ({0:k1r}NAME)[({0:i}NAME):(1)/(({0:k1}NAME)[({0:i}NAME)) .EQN 0 17 16 0 ({0:k2r}NAME)[({0:i}NAME):(1)/(({0:k2}NAME)[({0:i}NAME)) .TXT 7 1 16174 0 Cg a4.000000,21.000000,16 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\fs20 in urea}} } .EQN 3 -35 17 0 {0:corr}NAME({0:Sr}NAME,{0:k1r}NAME)={18997}?_n_u_l_l_ .EQN 0 31 18 0 {0:corr}NAME({0:Sr}NAME,{0:k2r}NAME)={18997}?_n_u_l_l_ .TXT 5 -47 16175 0 Cg a67.600000,70.300000,201 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The maximum turnover number }{\i k}{\fs16 \dn8 b}{ is the reciprocal of the slope, and the Michaelis constant }{\i K}{\fs16 \dn8 M}{ is the product of the slope with the maximum turnover number.}} } .TXT 12 -3 21 0 Cg a5.200000,5.600000,9 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Eadie:}} } .EQN 0 15 20 0 {0:k}NAME:-(({0:k}NAME)/({0:S}NAME))*{0:Km}NAME+{0:kb}NAME .TXT 7 -9 16176 0 Cg a64.100000,67.000000,163 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The correlation is between the rate }{\i \b0 k}{ and concentration }{\i0 \fs24 [}{\i0 \b0 \fs24 S]}{ ratio and the plain untransformed rate }{\i \b0 k}{. }} } .EQN 10 15 22 0 ({0:k1Sr}NAME)[({0:i}NAME):(({0:k1}NAME)[({0:i}NAME))/(({0:S}NAME)[({0:i}NAME)) .EQN 0 31 23 0 ({0:k2Sr}NAME)[({0:i}NAME):(({0:k2}NAME)[({0:i}NAME))/(({0:S}NAME)[({0:i}NAME)) .EQN 8 -35 24 0 {0:corr}NAME({0:k1Sr}NAME,{0:k1}NAME)={18997}?_n_u_l_l_ .EQN 0 31 25 0 {0:corr}NAME({0:k2Sr}NAME,{0:k2}NAME)={18997}?_n_u_l_l_ .TXT 5 -40 16177 0 Cg a59.700000,63.100000,174 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The maximum turnover number }{\b0 \i k}{\i0 \b0 \fs16 \dn8 b}{ and the Michaelis constant }{\b0 \i K}{\b0 \fs16 \dn8 M}{ are the intercept and the slope, respectively.}} } .TXT 10 -8 27 0 Cg a5.400000,5.600000,9 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Dixon:}} } .EQN 0 16 26 0 ({0:S}NAME)/({0:k}NAME):({0:Km}NAME)/({0:kb}NAME)+(1)/({0:kb}NAME)*{0:S}NAME .TXT 7 -8 16178 0 Cg a63.800000,66.000000,202 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The correlation is between the substrate concentration }{\i0 \fs24 [}{\i0 \b0 \fs24 S]}{ and the ratio of the substrate concentration }{\i0 \fs24 [}{\i0 \b0 \fs24 S] }{to the rate }{\b0 \i k}{.}} } .EQN 10 14 28 0 ({0:Sk1r}NAME)[({0:i}NAME):(({0:S}NAME)[({0:i}NAME))/(({0:k1}NAME)[({0:i}NAME)) .EQN 0 33 29 0 ({0:Sk2r}NAME)[({0:i}NAME):(({0:S}NAME)[({0:i}NAME))/(({0:k2}NAME)[({0:i}NAME)) .EQN 8 -39 30 0 {0:corr}NAME({0:S}NAME,{0:Sk1r}NAME)={18997}?_n_u_l_l_ .EQN 0 33 31 0 {0:corr}NAME({0:S}NAME,{0:Sk2r}NAME)={18997}?_n_u_l_l_ .TXT 5 -40 16179 0 Cg a59.200000,63.000000,199 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The maximum turnover number }{\i k}{\fs16 \dn8 b}{ is the reciprocal of the slope, and the Michaelis constant }{\i K}{\fs16 \dn8 M}{ is the product of the intercept with }{\i k}{\fs16 \dn8 b}{.}} } .TXT 9 -9 32 0 Cg a69.000000,72.400000,136 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The Dixon equation gives the best correlation and is used to calculate the Michaelis constant and the maximum turnover number. }} } .EQN 5 64 16181 0 {0:M}NAME:1 .EQN 4 -60 33 0 {0:b}NAME:{0:slope}NAME({0:S}NAME,{0:Sk1r}NAME) .EQN 0 25 34 0 {0:a}NAME:{0:intercept}NAME({0:S}NAME,{0:Sk1r}NAME) .EQN 6 -23 35 0 {0:kb}NAME:(1)/({0:b}NAME) .EQN 0 26 36 0 ({0:K}NAME)[({0:M}NAME):{0:a}NAME*{0:kb}NAME .EQN 6 -26 37 0 {0:kb}NAME={0}?_n_u_l_l_ .EQN 0 26 38 0 ({0:K}NAME)[({0:M}NAME)={0}?_n_u_l_l_ .TXT 11 -32 39 0 Cg a57.500000,73.400000,77 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain { The calculated and the experimentally obtained values can be plotted:}} } .EQN 3 20 16180 0 {0:Sg}NAME:0.02,0.0201;0.234 .TXT 0 25 16182 0 Cg a20.900000,26.000000,57 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {Sg is defined only to get a smoother regression curve}} } .EQN 6 -24 40 0 {0:k}NAME({0:Sg}NAME):{0:kb}NAME*(({0:Sg}NAME)/({0:Sg}NAME+({0:K}NAME)[({0:M}NAME))) .EQN 5 -10 41 0 _n_u_l_l_&_n_u_l_l_&(_n_u_l_l_&_n_u_l_l_)&{0:k}NAME({0:Sg}NAME),({0:k1}NAME)[({0:i}NAME)@_n_u_l_l_&_n_u_l_l_&(_n_u_l_l_&_n_u_l_l_)&{0:Sg}NAME,({0:S}NAME)[({0:i}NAME) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 5 NO-TRACE-STRING 2 0 1 0 NO-TRACE-STRING 0 3 2 0 NO-TRACE-STRING 0 4 3 0 NO-TRACE-STRING 0 1 4 0 NO-TRACE-STRING 0 2 5 0 NO-TRACE-STRING 0 3 6 0 NO-TRACE-STRING 0 4 0 0 NO-TRACE-STRING 0 1 1 0 NO-TRACE-STRING 0 2 2 0 NO-TRACE-STRING 0 3 3 0 NO-TRACE-STRING 0 4 4 0 NO-TRACE-STRING 0 1 5 0 NO-TRACE-STRING 0 2 6 0 NO-TRACE-STRING 0 3 0 0 NO-TRACE-STRING 0 4 1 0 NO-TRACE-STRING 0 1 40 16 0 3 .TXT 25 -11 16138 0 Cg a69.800000,73.000000,291 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\b Question}{\b s}{\par \par 1. Calculate the Michaelis constant and the maximum turnover number for the other two equations. Are the differences significant?\par \par 2. How does the correlation coefficient change with the ratio of the concentration of the substrate and the Michaelis constant?}} } .TXT 24 0 16157 0 Cg a70.900000,71.000000,509 {\rtf1\ansi \deff0 {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Arial;} } {\plain {\b References}{:\par \par 1. Z. Zdravkovski, Mathcad in Chemistry Calculations, }{\i J. Chem. Ed.}{ }{\b 1991}{, }{\i 68}{, A95 and }{\b 1992}{, }{\i 69}{, A240.\par \par 2. W. }{\b0 Moore, }{\i \b0 Physical Chemistry}{\b0 , 4th ed., }{\b0 \f0 Prentice-Hall, Englewood Cliffs, N.J. 1972, 410-2, 418-9.}{ \par \par 3. P. W. Atkins, Physical Chemistry, W. H. Freeman, New York, 4th ed., 1990, p. 804.\par \par 4. A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, 2nd ed., Worth Publishers, 1993, p. 212.}} }