Forensic criminalistics

<table>
<thead>
<tr>
<th>Basic module information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Course Title: Forensic Criminalistics</td>
</tr>
<tr>
<td>2. Course Code: CRIM</td>
</tr>
<tr>
<td>3. Credit Points: 7</td>
</tr>
<tr>
<td>4. Duration: One semester</td>
</tr>
<tr>
<td>5. School: Faculty of Natural Sciences and Mathematics</td>
</tr>
<tr>
<td>6. Date: September 2008</td>
</tr>
</tbody>
</table>

7 Pre, Post and Co-requisites:
These are modules that you must have studied previously in order to take this module, or modules that you must study simultaneously or in a subsequent academic session

<table>
<thead>
<tr>
<th>Pre, Co, Post</th>
<th>Module Code</th>
<th>Module Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 Overview and Aims
To develop an awareness of the application of criminalistics techniques in forensic science; Enabling practical application of relevant techniques to case work problems; Explain the methods and procedures applied by the crime laboratories to identify and characterize the forensic evidentiary samples

10 Course Content

A. Fundamental Principles and Concepts of Criminalistics
- Criminalistics and Special Areas of the Forensic Sciences (*Meaningful areas in forensic investigation of the crime evidence*)
- The Processes of Forensic Criminalistics (*Identification, Classification, Individualisation, Association and Reconstruction*; *The relationship of evidence to source*)
- Physical transfer of trace and macroscopic evidence and factors affecting transfer and detection
- Analysis and Interpretation of physical evidence (*The principle of divisible matter and its corollaries- profound effect on the forensic process of source*)
- A scientific examination of various types of evidence. *Examines the relevance of each type of evidence; Applies the scientific techniques of examination for each type of evidence and their interpretation*

B. Advanced methods to Forensic Criminalistics
- Scientific methods applied to the gathering and preservation of criminal evidence
- Techniques for collecting and identifying of physical evidence
- Appropriate methods of sampling and analysis of case materials
- Analytical techniques enabling forensic identification of evidence

C. Special Fields of application in Forensic Criminalistics
- Forensic macro and micro photography (*I. Importance of Forensic Photography*
from the judicial point of view—visual comparative techniques in Forensic Sciences; 2. Basic principles of forensic photography and legal issues related to forensic photography and courtroom or trial presentation; 3. Introduction to photographic techniques use in the various forensic sciences; 4. Crime scene photography-General scene photos; Fingerprint photography; Fluorescence and luminiscence photography of body fluids and latent fingerprint; Photography of laser beams in bullet trajectory cases; Photomicroscopy)

- Introduction to Forensic Microscopy
- Advance in Fingerprint Technology (Identification of latent print; Composition of latent print residue; Methods of latent fingerprint development—photoluminiscence, physical development, automated fingerprint identification and Imaging Systems)
- Footprint and other impressions (The measurement of the print, reproduction and identification methods)
- Toolmark examination methods
- Forensic Toxicology (Principles and Fundamentals of poisons; Methods of collection, preservation and preparing for analysis)
- Advances in Forensic Application of Mass Spectrometry - GC/MS, LC/MS (Methodology, Instrumentation and Forensic applications; Detection and identification of trace component in complex mixtures; Analysis of nonvolatile and thermally labile compounds; Current methods in Forensic Gunshot Residue Analysis)
- Environmental Forensic—Principles and Applications (Analytical methods and forensic techniques used in environmental litigation; Biodegradation and influence of chlorinated solvents and petroleum hydrocarbons; Nuclear and radioactive materials—detection and investigation of illicit trade)
- Traffic accidents and physical evidences investigation—vehicle identification
- Questioned Document (Paper analysis including banknotes)

D. Forensic Expertises

- Prerequisite for relevance expertise (Translating the legal question into a science question; Formulating Hypotheses; Useful Evidence; Useful Test; Further questions arise as a result of analysis)
- Examination and Analysis (Documentation; Preserving the integrity of the evidence; Results; Verification of results; Interpretation and Conclusions)

E. Legal environment and expert witnessing

- The scientific expert and the investigator (Connection between forensic experts and court practice; Developing the professional relationship)
- Courtroom skills and forensic expert opinions
- Preparation of cases for court—the expert report
- The role of the forensic scientists as expert witnesses
- Standards for Reliability and Relevance

Indicative Reading

12 Learning outcomes
Learning outcomes describe what you should know and be able to do by the end of the module.

Knowledge and understanding. After studying this module you should be able to:

- Select and explain the methods and procedures applied by the crime laboratories to identify and characterize the forensic evidentiary samples
- Describe and demonstrate the basic principles of forensic photography
- Examine the relevance of each type of evidence and applies the scientific techniques of examination
- Solve criminalistics problems using supplied data
- Describe the principles and fundamentals of poisons and the circumstances of poisoning cases and identify the required toxicological samples
- Describe different methods used in environmental litigation
- Understand the role of the forensic scientists as expert witnesses

Skills, qualities and attributes. After studying this module you should be able to:

- Apply scientific principles and methodologies to the solution of problems
- Analyse, evaluate and interpret data
- Competently use appropriate equipment and materials in the laboratory
- Develop subject specific practical/professional skills
- Fully understand the meaning and objective of scientific research, develop research question and apply the appropriate research methodology

13 Teaching and Learning

Range of modes of direct contact
This indicates the range of direct contact teaching and learning methods used on this module, e.g. lectures, seminars

- Lectures (20 hrs)
- Laboratories (30 hrs)
- Seminar (10 hrs)

Total contact hours: 60

Range of other learning methods
This indicates the range of other teaching and learning methods used on this module, e.g. directed reading, research

- Directed reading
- Maintaining laboratory case files
- Independent learning

Total non-contact hours: 80
14 **Assessment methods**
This indicates the type and weighting of assessment elements in the module

<table>
<thead>
<tr>
<th>Weighting</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Coursework</td>
<td>Laboratory casefiles (... aps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Problems (... aps)</td>
</tr>
</tbody>
</table>

Diagnostic/ formative assessment
This indicates if there are any assessments that do not contribute directly to the final module mark

Further information on assessment
This section provides further information on the module's assessment where appropriate